Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer.

نویسندگان

  • Danxin Wang
  • Xiaochun Sun
  • Laura M Bohn
  • Wolfgang Sadée
چکیده

Opioid receptors have been shown to dimerize or oligomerize among themselves and each other, affecting their functional properties. This study used bioluminescence resonance energy transfer (BRET) between the mu, delta, and kappa opioid receptors to study opioid receptor aggregation in transfected human embryonic kidney 293 cells. Titration of receptor levels indicated that all three opioid receptors have a similar affinity to form homo- or hetero-oligomers in combination with any other opioid receptor type. In contrast, none of the opioid receptors formed detectable oligomers with the muscarinic M2 receptor, indicating that interactions among opioid receptors are selective. The formation of opioid receptor dimers, rather than higher order oligomers, is supported by binding kinetics in competition experiments between labeled and unlabeled receptors. Opioid receptor dimerization occurred at physiological temperatures upon receptor biosynthesis, before trafficking to the plasma membrane. Moreover, using BRET, coimmunoprecipitation, receptor binding, and G protein coupling, we demonstrate for the first time functional mu opioid receptor-kappa opioid receptor heterodimerization. These combined results demonstrate that opioid receptors can undergo homo- and heterodimerization, a process with potential implications for opioid physiology and pharmacology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization.

Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 ...

متن کامل

Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences.

Homo- and hetero-oligomerization of G-protein-coupled receptors (GPCRs) were examined in HEK-293 cells using two variants of bioluminescence resonance energy transfer (BRET). BRET(2) (a variant of BRET) offers greatly improved separation of the emission spectra of the donor and acceptor moieties compared with traditional BRET. Previously recorded homo-oligomerization of the human delta-opioid r...

متن کامل

Neuropeptide Y Y4 receptor homodimers dissociate upon agonist stimulation.

The pancreatic polypeptide-fold family of peptides consists of three 36-amino acid peptides, namely neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP). These peptides regulate important functions, including food intake, circadian rhythms, mood, blood pressure, intestinal secretion, and gut motility, through four receptors: Y1, Y2, Y4, and Y5. Additional receptor subtypes have bee...

متن کامل

The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities.

Both homo- and heterodimeric interactions between the CXCR1 and CXCR2 chemokine receptors were observed following co-expression of forms of these receptors in HEK293 cells using assays, including co-immunoprecipitation, single cell imaging of fluorescence resonance energy transfer, cell surface time-resolved fluorescence resonance energy transfer, and bioluminescence resonance energy transfer. ...

متن کامل

Ligand-independent homo- and heterodimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization.

Prolactin (PRL) acts through the long form (LF) of the human PRL receptor (hPRLR) to cause differentiation of mammary epithelial cells through activation of the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) pathway and subsequent transcriptional events. To determine whether the inhibitory action of hPRLR short forms (SFs; S1a and S1b) on PRL-induced signal tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 67 6  شماره 

صفحات  -

تاریخ انتشار 2005